17.7 C
La Serena
Domingo, Enero 19, 2025
spot_img

Un equipo de astrónomos capta la primera imagen de un agujero negro

El Telescopio de Horizonte de Sucesos (EHT, Event Horizon Telescope), un conjunto de ocho telescopios basados en tierra distribuidos por todo el planeta y formado gracias a una colaboración internacional, fue diseñado para captar imágenes de un agujero negro. Hoy, en ruedas de prensa coordinadas por todo el mundo, los investigadores del EHT revelan que han logrado descubrir la primera evidencia visual directa de un agujero negro supermasivo y su sombra.

RetroTour

Este avance revolucionario ha sido anunciado hoy en una serie de seis artículos científicos publicados en una edición especial de la revista The Astrophysical Journal Letters. La imagen revela el agujero negro que hay en el centro de Messier 87 [1], una galaxia masiva en el cercano cúmulo de galaxias Virgo. Este agujero negro se encuentra a 55 millones de años luz de la Tierra y tiene una masa de 6500 millones de veces la del Sol [2].

El EHT une a telescopios de todo el mundo para formar un telescopio virtual sin precedentes del tamaño de la Tierra [3]. El EHT ofrece a los científicos una nueva forma de estudiar los objetos más extremos del universo, predichos por la relatividad general de Einstein, durante el año del centenario del histórico experimento que confirmó la teoría por primera vez [4].

“Hemos tomado la primera fotografía de un agujero negro”, afirmó el director del proyecto EHT, Sheperd S. Doeleman, del Centro de Astrofísica Harvard-Smithsonian. “Es una extraordinaria hazaña científica lograda por un equipo de más de 200 investigadores”.

Los agujeros negros son objetos cósmicos extraordinarios con enormes masas pero con tamaños extremadamente compactos. La presencia de estos objetos afecta a su entorno de maneras extremas, deformando el espacio-tiempo y sobrecalentando cualquier material circundante.

“Si está inmerso en una región brillante, como un disco de gas que refulge intensamente, podemos esperar que un agujero negro cree una región oscura similar a una sombra, algo predicho por la relatividad general de Einstein que nunca habíamos visto antes”, explicó el Presidente del Consejo Científico del EHT, Heino Falcke, de la Universidad de Radboud, en Países Bajos. “Esta sombra, causada por la flexión gravitacional y la captura de luz por parte del horizonte de sucesos, revela mucho sobre la naturaleza de estos objetos fascinantes y nos ha permitido medir la enorme masa del agujero negro de M87.”

Utilizando métodos de calibración múltiple y métodos de imagen, se ha descubierto la presencia de una estructura en forma de anillo con una región central oscura —la sombra del agujero negro— que persistió durante varias observaciones independientes llevadas a cabo por el EHT.

“Cuando estuvimos seguros de que habíamos captado la imagen de la sombra, pudimos comparar nuestras observaciones con una extensa biblioteca de modelos computacionales que incluyen la física del espacio curvo, materia súper caliente e intensos campos magnéticos. Muchas de las estructuras en la imagen coinciden sorprendentemente bien con la predicción teórica”, comenta el miembro del Consejo del EHT, Paul T.P. Ho, Director del Observatorio de Asia del Este. “Esto nos permite confiar en la interpretación de nuestras observaciones, incluyendo la estimación de la masa del agujero negro”.

“La confrontación de la teoría con la observación es siempre un momento crucial para un teórico. Ha sido motivo de alivio y orgullo concluir que las observaciones coincidían tan bien con la predicción”, agrega el miembro de Consejo de EHT Luciano Rezzolla, de la Universida de Goethe, Alemania.

La creación del EHT fue un reto formidable que requirió de la actualización y conexión de una red mundial de ocho telescopios preexistentes, situados en múltiples emplazamientos a una altitud desafiante. Estos lugares incluyen volcanes en Hawái y México, las montañas de Arizona y Sierra Nevada (esta última en España), el desierto chileno de Atacama y la Antártida.

Las observaciones del EHT utilizan una técnica llamada interferometría de muy larga base (VLBI, Very-Long-Baseline Interferometry) que sincroniza los telescopios ubicados en instalaciones de todo el mundo y explota la rotación de nuestro planeta para formar un enorme telescopio del tamaño de la Tierra, observando en una longitud de onda de 1,3 mm. VLBI permite al EHT alcanzar una resolución angular de 20 microsegundos de arco (suficiente para leer un periódico en Nueva York desde un café de París) [5].

Los telescopios que han contribuido a este resultado fueron ALMAAPEX, el telescopio IRAM de 30 metros, el Telescopio James Clerk Maxwell, el Gran Telescopio Milimétrico Alfonso Serrano, el Conjunto Submilimétrico, el Telescopio Submilimétrico y el Telescopio del Polo Sur [6]. Unos superordenadores, altamente especializados y ubicados en el Instituto Max Planck de Radioastronomía y el Observatorio Haystack del MIT, combinaron petabytes de datos brutos procedentes de estos telescopios.

Las instalaciones y la financiación europeas han jugado un papel crucial en este esfuerzo mundial, con la participación de avanzados telescopios europeos y el apoyo del Consejo Europeo de Investigación, en concreto, una dotación 14 millones de euros para el proyecto de BlackHoleCam [7]. El apoyo de ESO, IRAM y de la Sociedad Max-Planck también fue clave. “Este resultado se basa en décadas de experiencia europea en astronomía milimétrica”, comentó Karl Schuster, Director de IRAM y miembro del Consejo del EHT.

La construcción del EHT y las observaciones anunciadas hoy representan la culminación de décadas de trabajo observacional, técnico y teórico. Este ejemplo de trabajo en equipo global requirió de una estrecha colaboración por parte de investigadores de todo el mundo. Trece instituciones trabajaron juntas para crear el EHT, usando tanto infraestructuras preexistente como el apoyo de una gran variedad de organismos. La financiación clave fue proporcionada por la NSF (National Science Foundation), el ERC (Consejo Europeo de Investigación de la UE) y agencias de financiación de Asia Oriental [8].

“Es una satisfacción para ESO haber podido contribuir, de manera significativa, en este resultado a través de su liderazgo europeo y su papel fundamental en dos de los telescopios que componen el EHT, ubicados en Chile — ALMA y APEX”,comentó el Director General de ESO, Xavier Barcons. “ALMA es la instalación con mayor sensibilidad del EHT, y sus 66 antenas de alta precisión fueron críticas a la hora de hacer que el EHT sea un éxito”.

“Hemos logrado algo que, hace tan solo una generación, parecía imposible”, concluyó Doeleman. “Los avances revolucionarios de la tecnología, las conexiones entre los mejores observatorios de ondas de radio del mundo y los innovadores algoritmos, todo esto junto, ha abierto una ventana totalmente nueva para el estudio de los agujeros negros y el horizonte de sucesos”.

FUENTE: ESO

Notas Relacionadas

Conéctate

4,941FansMe gusta
1,615SeguidoresSeguir
4,319SeguidoresSeguir
spot_img
spot_img
spot_img
spot_img
spot_img